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Abstract

In this paper we present several new characterizations of normal
and Hermitian elements in rings with involution in purely algebraic
terms, and considerably simplify proofs of already existing characteri-
zations.
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1 Introduction

Normal and Hermitian matrices, as well as normal and Hermitian linear
operators on Banach or Hilbert spaces have been investigated by many au-
thors (see, for example, [1, 2, 3, 5, 6, 7, 9, 10, 12, 16]). In this paper we
use a different approach, exploiting the structure of rings with involution to
investigate normal and Hermitian elements which are also Moore-Penrose
invertible. We give new characterizations, and the proofs are based on ring
theory only.

Let R be an associative ring, and let a ∈ R. Then a is group invertible
if there is a# ∈ R such that

aa#a = a, a#aa# = a#, aa# = a#a;

a# is a group inverse of a and it is uniquely determined by these equations
[4]. We provide a short proof: if b, c are two candidates for a group inverse of
a, then b = b2a = b2a2c = bac = ba2c2 = ac2 = c. Thus, the group inverse of
a is unique if it exists. The group inverse a# double commutes with a, that is,
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ax = xa implies a#x = xa# [4, 7]. To see that a# double commutes with a,
we assume that ax = xa. Then a#x = (a#)2ax = (a#)2xa = (a#)2xa2a# =
(a#)2axaa# = a#xaa#. Similarly xa# = a#axa#, and a#x = xa#.

We use R# to denote the set of all group invertible elements of R.
An involution a 7→ a∗ in a ring R is an anti-isomorphism of degree 2,

that is,
(a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗.

An element a ∈ R satisfying aa∗ = a∗a is called normal. An element a ∈ R
satisfying a = a∗ is called Hermitian (or symmetric).

We say that b = a† is the Moore–Penrose inverse (or MP-inverse) of a,
if the following hold [15]:

aba = a, bab = b, (ab)∗ = ab, (ba)∗ = ba.

There is at most one b such that above conditions hold (see [11, 13]). The
set of all Moore–Penrose invertible elements of R will be denoted by R†.
Definition 1.1. An element a ∈ R is ∗-cancellable if

(1) a∗ax = 0 ⇒ ax = 0 and xaa∗ = 0 ⇒ xa = 0.

Applying the involution to (1), we observe that a is *-cancellable if and
only if a∗ is *-cancellable. In C∗-algebras all elements are ∗-cancellable.

Theorem 1.1. [14] Let a ∈ R. Then a ∈ R† if and only if a is *-cancellable
and a∗a is group invertible.

Theorem 1.2. [7] For any a ∈ R†, the following is satisfied:

(a) (a†)† = a;

(b) (a∗)† = (a†)∗;

(c) (a∗a)† = a†(a†)∗;

(d) (aa∗)† = (a†)∗a†;

(f) a∗ = a†aa∗ = a∗aa†;

(g) a† = (a∗a)†a∗ = a∗(aa∗)† = (a∗a)#a∗ = a∗(aa∗)#;

(h) (a∗)† = a(a∗a)† = (aa∗)†a.
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Proof. (a) It is easy to check that a is the Moore–Penrose inverse of a†, by
direct computation.

(b) From (a†)∗a∗(a†)∗ = (a†aa†)∗ = (a†)∗, a∗(a†)∗a∗ = (aa†a)∗ = a∗,
(a∗(a†)∗)∗ = a†a = (a†a)∗ = a∗(a†)∗ and ((a†)∗a∗)∗ = aa† = (aa†)∗ =
(a†)∗a∗, we see that (a†)∗ is the Moore–Penrose inverse of a∗.

(c) Since a∗aa†(a†)∗a∗a = a∗aa†(aa†)∗a = a∗aa†aa†a = a∗a,
a†(a†)∗a∗aa†(a†)∗ = a†(aa†)∗aa†(a†)∗ = a†aa†aa†(a†)∗ = a†(a†)∗,
(a∗aa†(a†)∗)∗ = ((a†)∗)∗(aa†)∗(a∗)∗ = a†aa†a = a†a = (a†a)∗ = a∗(a†)∗ =
(aa†a)∗(a†)∗ = a∗aa†(a†)∗ and (a†(a†)∗a∗a)∗ = (a†aa†a)∗ = (a†a)∗ = a†a =
a†aa†a = a†(a†)∗a∗a, we conclude that a†(a†)∗ is the Moore–Penrose inverse
of a∗a.

(d) This part can be proved in a similar way as (c).
(f) The first equality follows from a∗ = (aa†a)∗ = (a†a)∗a∗ = a†aa∗. The

second equality can be obtain in the same manner.
(g) From the part (c), we get a† = a†aa† = a†(aa†)∗ = a†(a†)∗a∗ =

(a∗a)†a∗. In the same way the equality a† = a∗(aa∗)† follows by (d). The
equalities a† = (a∗a)#a∗ = a∗(aa∗)# are proved in [14].

(h) Applying involution to the first equality a† = (a∗a)†a∗ in the part
(g), we get (a†)∗ = a((a∗a)†)∗. Then, by (b), (a∗)† = a((a∗a)∗)† = a(a∗a)†.
The second equality follows analogously.

In this paper we will use the following definition of EP elements [14].

Definition 1.2. An element a of a ring R with involution is said to be EP
if a ∈ R# ∩ R† and a# = a†. An element a is generalized EP (or gEP for
short) if there exists k ∈ N such that ak is EP.

The following result is well known for matrices, Hilbert space operators
and elements of C∗-algebras, and it is equally true in rings with involution:

Lemma 1.1. Let a ∈ R† and b ∈ R. If ab = ba and a∗b = ba∗, then
a†b = ba†.

Proof. Suppose that b commutes with a and a∗. Since a ∈ R†, we get
a† = a∗(aa∗)† = a∗(aa∗)#. Now, aa∗ commutes with b. The group inverse
(aa∗)# double commutes with aa∗, so (aa∗)# commutes with b. It follows
that a† commutes with b.

The next result is also well known for matrices, Hilbert space operators
and elements of C∗-algebras, and we prove that it is true in rings with
involution:
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Lemma 1.2. Let a ∈ R†. Then a is normal if and only if aa† = a†a and
a∗a† = a†a∗.

Proof. If a is normal, then, from Lemma 1.1, it follows that a† commutes
with a and with a∗.

Conversely, suppose that aa† = a†a and a∗a† = a†a∗. Now, we obtain

aa∗ = aa∗(aa†) = a(a∗a†)a = (aa†)a∗a = a†aa∗a = a∗a.

Hence, a is normal.

Notice that the condition aa† = a†a generalizes the notion of EP ma-
trices, and the condition a∗a† = a†a∗ generalizes the notion of star-dagger
matrices [12].

From Lemma 1.2, we obtain the following result.

Lemma 1.3. If a ∈ R† is normal, then a is EP.

The following result is proved in [14].

Theorem 1.3. An element a ∈ R is EP if and only if a is group invertible
and a#a is symmetric.

The paper is organized as follows. In Section 2 characterizations of MP-
invertible normal elements in rings with involution are given. In Section 3,
MP-invertible Hermitian elements in rings with involution are investigated.
Some of these results are proved for complex square matrices in [3], using
the rank of a matrix, or in [1], using an elegant representation of square
matrices as the main technique. Moreover, the operator analogues of these
results are proved in [5] and [6] for linear bounded operators on Hilbert
spaces, using the operator matrices as the main tool. In this paper we show
that neither the rank (in the finite dimensional case) nor the properties of
operator matrices (in the infinite dimensional case) are necessary for the
characterization of normal and Hermitian elements.

2 Normal elements

In this section MP-invertible normal elements in rings with involution are
characterized by conditions involving their group and Moore–Penrose in-
verse.

We mention that the following result is a consequence of a direct com-
putation.
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Lemma 2.1. If a ∈ R†, then aa∗a ∈ R† and (aa∗a)† = a†(a∗)†a†.

We start with the following necessary and sufficient conditions for an
element a of a ring with involution to be normal.

Theorem 2.1. Suppose that a ∈ R†. The following statements are equiva-
lent:

(i) a is normal;

(ii) a(aa∗a)† = (aa∗a)†a;

(iii) a†(a + a∗) = (a + a∗)a†.

Proof. (i)⇒ (ii): If a is normal, by Lemma 1.2, we get aa† = a†a and a∗a† =
a†a∗. Applying involution to the second equality, we get (a†)∗a = a(a†)∗.
Then

(2) aa†(a†)∗a† = a†a(a†)∗a† = a†(a†)∗aa† = a†(a†)∗a†a.

By Lemma 2.1, we have (aa∗a)† = a†(a†)∗a†. Using this equality in (2), we
get a(aa∗a)† = (aa∗a)†a. So, the condition (ii) holds.

(ii) ⇒ (iii): Let a(aa∗a)† = (aa∗a)†a. Applying Lemma 2.1, we know
that (aa∗a)† = a†(a†)∗a† holds. Thus, the assumption (ii) is equivalent to

aa†(a†)∗a† = a†(a†)∗a†a,

which gives, using Theorem 1.2,

(3) (a†)∗a† = a†(a†)∗.

Multiplying (3) by a∗ from the left and from the right side, we obtain

(4) a†a∗ = a∗a†.

Now, by (3) and (4), we have

aa† = a(a†a)∗a† = aa∗((a†)∗a†) = a(a∗a†)(a†)∗ = aa†a∗(a†)∗ = aa†a†a,

and

a†a = a†(aa†)∗a = (a†(a†)∗)a∗a = (a†)∗(a†a∗)a = (a†)∗a∗a†a = aa†a†a.

Hence,

(5) aa† = a†a.
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From (4) and (5), we deduce that the condition (iii) is satisfied.
(iii) ⇒ (i): The condition a†(a + a∗) = (a + a∗)a† can be written as

(6) a†a + a†a∗ = aa† + a∗a†.

Multiplying (6) by a from the left and from the right side, we get

aa + aa†a∗a = aa + aa∗a†a,

i.e.
aa†a∗a = aa∗a†a.

Multiplying the previous equality by a† from the left and from the right side,
we obtain, using Theorem 1.2,

(7) a†a∗ = a∗a†.

Now, from (6), we obtain

(8) a†a = aa†.

Thus, by (8), (7) and Lemma 1.2, a is normal.

In the following theorem we again assume that the element a is Moore–
Penrose invertible, and study 22 conditions involving a†, a# and a∗ to ensure
that a is normal. The following result is inspired by Theorems 2, 5 and 6 in
[1].

Theorem 2.2. Suppose that a ∈ R†. Then a is normal if and only if
a ∈ R# and one of the following equivalent conditions holds:

(i) aa∗a# = a#aa∗;

(ii) aa#a∗ = a#a∗a;

(iii) a∗aa# = a#a∗a;

(iv) aa∗a# = a∗a#a;

(v) aaa∗ = aa∗a;

(vi) aa∗a = a∗aa;

(vii) a∗a# = a#a∗;

(viii) a∗a† = a#a∗;

6



(ix) a∗a# = a†a∗;

(x) aa∗a† = a∗;

(xi) a†a∗a = a∗;

(xii) aa∗a# = a∗;

(xiii) a#a∗a = a∗;

(xiv) a∗a#a# = a#a∗a#;

(xv) a#a∗a# = a#a#a∗;

(xvi) a∗a∗a# = a∗a#a∗;

(xvii) a∗a#a∗ = a#a∗a∗;

(xviii) a∗a†a# = a#a∗a†;

(xix) a∗a#a† = a†a∗a#;

(xx) a†a∗a# = a#a†a∗;

(xxi) a†a#a∗ = a#a∗a†;

(xxii) There exists some x ∈ R such that ax = a∗ and (a†)∗x = a†.

Proof. If a is normal, then it commutes with a† and a∗ and a# = a†. It is
not difficult to verify that conditions (i)-(xxii) hold.

Conversely, we assume that a ∈ R#. To conclude that a is normal, we
show that the condition aa∗ = a∗a is satisfied, or that the element is subject
to one of the preceding already established conditions of this theorem.

(i) Suppose that aa∗a# = a#aa∗. Then we get

a†aaa∗ = a†aa(aa†a)∗ = a†aaa∗aa† = a†aaa∗aa#aa†

= a†a(aa∗a#)aaa† = a†aa#aa∗aaa†

= a†aa∗aaa† = a∗aaa†.

Now, from the previous equality and (i), it follows

a∗aa† = a∗ = a†aa∗ = a†a(a#aa∗) = (a†aaa∗)a#

= a∗aaa†a# = a∗aaa†a(a#)2 = a∗aa(a#)2

= a∗aa#,
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i.e.

(9) a∗a(a† − a#) = 0.

Since a ∈ R†, a is *-cancellable by Theorem 1.1. Hence from (9) and *-
cancellation, we obtain a(a† − a#) = 0, i.e. aa† = aa#. Hence

(10) a∗ = (aaa#)∗ = (aaa†)∗ = aa†a∗ = aa#a∗.

By (10), (i) and a∗ = a∗aa† = a∗aa# = a∗a#a, it follows

a∗a = aa#a∗a = (a#aa∗)a = a(a∗a#a) = aa∗.

(ii) Using the assumption aa#a∗ = a#a∗a, we have

aa∗a# = a(aa#a∗)a# = (aa#a∗)aa# = a#a∗aaa#

= (a#a∗a) = aa#a∗ = a#aa∗,

i.e. the condition (i) is satisfied.
(iii) Applying the equality a∗aa# = a#a∗a, we obtain

a†aaa∗ = a†aaa∗aa† = a†aa(a∗aa#)aa† = a†aaa#a∗aaa†

= a†aa∗aaa† = a∗aaa†.

Using the previous equality and (iii), we get

a†aa∗ = a∗ = a∗aa† = (a∗aa#)aa† = a#(a∗aaa†)
= a#a†aaa∗ = (a#)2aa†aaa∗ = (a#)2aaa∗ = a#aa∗,

i.e.

(11) (a† − a#)aa∗ = 0.

From a ∈ R†, by Theorem 1.1, we know that a is *-cancellable. Then, by
(11) and *-cancellation, we get (a† − a#)a = 0, i.e. a†a = a#a. So

(12) a∗ = (a#aa)∗ = (a†aa)∗ = a∗a†a = a∗a#a.

Thus, from a∗ = a#aa∗ = aa#a∗, (iii) and (12), we have

a∗a = a(a#a∗a) = a(a∗aa#) = aa∗.

(iv) The equality aa∗a# = a∗a#a gives

a∗aa# = a∗a#a = aa∗a# = a#a(aa∗a#)
= a#(aa∗a#)a = a#a∗a#aa = a#a∗a.
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Hence, the condition (iii) is satisfied.
(v) If aaa∗ = aa∗a, we get

aa#a∗ = a#a#(aaa∗) = a#a#aa∗a = a#a∗a.

Therefore, the condition (ii) holds.
(vi) Suppose that aa∗a = a∗aa, then we have

aa∗a# = (aa∗a)a#a# = a∗aaa#a# = a∗aa# = a∗a#a.

So, the equality (iv) holds.
(vii) From the equality a∗a# = a#a∗, we obtain

aa∗a# = aa#a∗ = a#aa∗.

Then, we deduce that the condition (i) is satisfied.
(viii) The assumption a∗a† = a#a∗ implies

(a#)2aa∗ = a#a∗ = a∗a† = a†a(a∗a†) = a†aa#a∗,

i.e.

(13) ((a#)2 − a†a#)aa∗ = 0.

By the condition a ∈ R† and Theorem 1.1, we conclude that a is *-cancellable.
Using the equality (13) and *-cancellation, we have ((a#)2 − a†a#)a = 0,
i.e.

(14) a# = a†a#a.

From this equality, we get a#a = a†a and

(15) a∗ = (a#aa)∗ = (a†aa)∗ = a∗a†a = a∗a#a.

The equalities (14), (viii) and (15) give

a∗a# = (a∗a†)a#a = a#(a∗a#a) = a#a∗.

Now condition (viii) is obtained from (vii).
(ix) Assume that a∗a# = a†a∗. Now, it follows

a∗a(a#)2 = a∗a# = a†a∗ = (a†a∗)aa† = a∗a#aa†,

i.e.

(16) a∗a((a#)2 − a#a†) = 0.
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Since a ∈ R†, a is *-cancellable by Theorem 1.1. From (16) and *-cancellation,
we obtain a((a#)2 − a#a†) = 0, i.e.

(17) a# = aa#a†.

By (17), we have aa# = aa† and

(18) a∗ = (aaa#)∗ = (aaa†)∗ = aa†a∗ = aa#a∗.

Then, from (18), (ix) and (17), we get

a∗a# = aa#(a∗a#) = (aa#a†)a∗ = a#a∗.

Hence, the condition (vii) is satisfied.
(x) Using aa∗a† = a∗, we have

a∗a† = aa∗a†a† = a#a(aa∗a†)a† = a#(aa∗a†) = a#a∗.

Thus, the equality (viii) holds.
(xi) By a†a∗a = a∗, it follows

a∗a# = a†a∗aa# = a†a†a∗aaa# = a†(a†a∗a) = a†a∗.

We obtain that the condition (ix) is satisfied.
(xii) The condition aa∗a# = a∗ implies

a∗a# = a†(aa∗a#) = a†a∗,

i.e. the equality (ix) holds.
(xiii) If a#a∗a = a∗, then we get

a∗a† = a#a∗aa† = a#a∗.

The equality (xiii) is obtained from (viii).
(xiv) Applying a∗a#a# = a#a∗a#, we have

a∗aa# = (a∗a#a#)aa = a#a∗a#aa = a#a∗a.

Now, the condition (iii) holds.
(xv) From the equality a#a∗a# = a#a#a∗, we obtain

aa∗a# = aa(a#a∗a#) = aaa#a#a∗ = aa#a∗ = a#aa∗.

Therefore, the equality (i) is satisfied.
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(xvi) Suppose that a∗a∗a# = a∗a#a∗. Then we obtain

a∗a(a#)2a∗ = a∗a#a∗ = a∗a∗a# = (a∗a∗a#)aa#

= a∗a#a∗aa# = a∗a(a#)2a∗aa#,

i.e.

(19) a∗a((a#)2a∗ − (a#)2a∗aa#) = 0.

From a ∈ R†, by Theorem 1.1, we deduce that a is *-cancellable. Then, by
(19) and *-cancellation, we get a((a#)2a∗ − (a#)2a∗aa#) = 0, i.e. a#a∗ =
a#a∗aa#. The last equality gives

a∗aa† = a∗ = a†aa∗ = a†a2(a#a∗) = a†a2a#a∗aa#

= a†aa∗aa# = a∗aa#.

Thus, a∗a(a† − a#) = 0 and, using *-cancellation again,

(20) aa† = aa#.

Multiplying (20) by a from the left side, we obtain

(21) aaa† = aaa# = a.

Applying the equality (21) and (xvi), we have

a∗ = (aaa†)∗ = aa†a∗ = aa†aa†a∗ = aa†(aa†)∗a∗aa†

= aa†(a†)∗(a∗a∗a#)a2a† = aa†(a†)∗a∗a#a∗(a2a†)
= aa†aa†a#a∗a = aa†a#a∗a = aa†a(a#)2a∗a
= a(a#)2a∗a = a#a∗a.

Therefore, the condition (xiii) is satisfied.
(xvii) Assume that a∗a#a∗ = a#a∗a∗. Then, it follows

a∗(a#)2aa∗ = a∗a#a∗ = a#a∗a∗ = a#a(a#a∗a∗)
= a#aa∗a#a∗ = a#aa∗(a#)2aa∗.

So

(22) (a∗(a#)2 − a#aa∗(a#)2)aa∗ = 0.
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The assumption a ∈ R† and Theorem 1.1 imply that a is *-cancellable.
Thus, from (22) and *-cancellation, we have (a∗(a#)2 − a#aa∗(a#)2)a = 0,
i.e. a∗a# = a#aa∗a#. Now, by the previous equality, we obtain

a†aa∗ = a∗ = a∗aa† = (a∗a#)a2a† = a#aa∗a#a2a†

= a#aa∗aa† = a#aa∗.

Hence, (a† − a#)aa∗ = 0 and, using *-cancellation,

(23) a†a = a#a.

Multiplying (23) by a from the right side, we get

(24) a†aa = a#aa = a.

From (24) and (xvii), we have

a∗ = (a†aa)∗ = a∗a†a = a†aa∗a†aa†a = a†a2(a#a∗a∗)(a†)∗a†a
= (a†a2)a∗a#a∗(a†)∗a†a = aa∗a#a†aa†a
= aa∗a#a†a = aa∗(a#)2aa†a = aa∗(a#)2a
= aa∗a#.

The equality (xii) holds.
(xviii) The equality a∗a†a# = a#a∗a† gives

(25) a∗a† = a∗a†aa† = (a∗a†a#)aaa† = a#a∗a†aaa†.

Using (xviii) and (25), we see that

a#a∗a† = a∗a†a# = a†a(a∗a†a#) = a†aa#(a∗a†)
= a†aa#a#a∗a†aaa† = a†(a#a∗a†aaa†)
= a†a∗a†.(26)

Then, from (26), we get

(27) aa∗a∗ = a2a#a∗a∗ = a2(a#a∗a†)aa∗ = a2a†a∗a†aa∗ = aaa†a∗a∗.

Applying the equality (27), we obtain

a#aa∗ = a#a#aaa∗ = a#a#(aa∗a∗)∗ = a#a#(aaa†a∗a∗)∗

= a#a#aaaa†a∗ = aa†a∗ = aa†a†aa∗
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and consequently

(28) (a# − aa†a†)aa∗ = 0.

The condition a ∈ R† implies that a is *-cancellable, by Theorem 1.1. Now,
from (28) and *-cancellation, we have (a# − aa†a†)a = 0 which gives

(29) a#a = aa†a†a.

Thus, by (25) and (29),

a∗a† = a#a∗a†aaa† = a#(aa†a†aa)∗ = a#(a#aa)∗ = a#a∗.

Therefore, the condition (viii) is satisfied.
(xix) If a∗a#a† = a†a∗a#, then we get

a∗a(a#)2a# = a∗(a#)2aa†aa# = (a∗a#a†)aa# = a†a∗a#aa#

= a†a∗a# = a∗a#a† = a∗a(a#)2a†

which yields

(30) a∗a((a#)2a# − (a#)2a†) = 0.

From a ∈ R†, by Theorem 1.1, we deduce that a is *-cancellable. Now, by
(30) and *-cancellation, we obtain a((a#)2a# − (a#)2a†) = 0, i.e.

(31) a#a# = a#a†.

When we use the equality (31), we get

(32) a∗aa# = a∗a2(a#a#) = a∗a2a#a† = a∗aa† = a∗.

Then, by (xix) and (32), we have

a∗a# = a∗(a#)2a = a∗(a#)2aa†a = (a∗a#a†)a
= a†a∗a#a = a†(a∗aa#) = a†a∗,

i.e. the condition (ix) holds.
(xx) Since a†a∗a# = a#a†a∗, we get

(33) a†a∗ = a†aa†a∗ = a†aa(a#a†a∗) = a†aaa†a∗a#.
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By (xx) and (33), we have

a†a∗a# = a#a†a∗ = (a#a†a∗)aa† = (a†a∗)a#aa†

= a†aaa†a∗a#a#aa† = (a†aaa†a∗a#)a†

= a†a∗a†.

From the previous equality, we obtain

(34) a∗a∗a = a∗a∗a#a2 = a∗a(a†a∗a#)a2 = a∗aa†a∗a†a2 = a∗a∗a†aa.

Using (34), we get

a∗aa# = a∗aaa#a# = (a∗a∗a)∗a#a# = (a∗a∗a†aa)∗a#a#

= a∗a†aaaa#a# = a∗a†a = a∗aa†a†a

which gives

(35) a∗a(a# − a†a†a) = 0.

Then a is *-cancellable, by a ∈ R† and Theorem 1.1, and thus, from (35),

(36) aa# = aa†a†a.

Applying (36) and (33), we see that

a∗a# = (aaa#)∗a# = (aaa†a†a)∗a# = a†aaa†a∗a# = a†a∗.

So the condition (ix) is satisfied.
(xxi) Assume that a†a#a∗ = a#a∗a†. Then we obtain

a#(a#)2aa∗ = a#aa†a(a#)2a∗ = a#a(a†a#a∗) = a#aa#a∗a†

= a#a∗a† = a†a#a∗ = a†(a#)2aa∗

such that

(37) (a#(a#)2 − a†(a#)2)aa∗ = 0.

From a ∈ R† and Theorem 1.1, a is *-cancellable and thus, by (37),

(a#(a#)2 − a†(a#)2)a = 0,

i.e.

(38) a#a# = a†a#.
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Using (38), we get

(39) a#aa∗ = (a#a#)a2a∗ = a†a#a2a∗ = a†aa∗ = a∗.

Hence, by (39) and (xxi), it follows

a∗a† = a#aa∗a† = a(a#a∗a†) = aa†a#a∗

= aa†a(a#)2a∗ = a(a#)2a∗ = a#a∗.

Therefore, the condition (xxi) implies the equality (viii).
(xxii) Suppose that there exists some x ∈ R such that ax = a∗ and

(a†)∗x = a†. From Theorem 1.2, we have

(a†)∗ = (a∗)† = (aa∗)†a = (a†)∗a†a.

Then, by ax = a∗ and (a†)∗x = a†, we get

a† = (a†)∗x = (a†)∗a†(ax) = (a†)∗a†a∗.

Now, this equality implies

(40) a∗a† = a∗(a†)∗a†a∗ = a†aa†a∗ = a†a∗

and

(41) a† = (a†)∗(a†a∗) = (a†)∗a∗a† = aa†a†.

Using (41), we obtain

(42) a#aa∗ = a#aa†aa∗ = a#aaa†a†aa∗ = (aa†a†)aa∗ = a†aa∗,

i.e.

(43) (a† − a#)aa∗ = 0.

By a ∈ R† and Theorem 1.1, a is *-cancellable and thus, from (43),

a†a = a#a.

Hence, by the last equality and (40),

a∗a† = a†a∗ = a†(a†a)a∗ = a†a#aa∗ = (a†a)a#a∗ = a#aa#a∗ = a#a∗.

The condition (viii) holds.
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Finally, we set some open problems for the characterization of normal
elements in rings with involutions. Notice that the following result holds for
linear bounded operators on Hilbert spaces.

Conjecture 2.1. Let a ∈ R†. Then a is normal if and only if one of the
following conditions hold:

(i) a(a∗ + a†) = (a∗ + a†)a;

(ii) a ∈ R# and a∗a(aa∗)†a∗a = aa∗;

(iii) a ∈ R# and aa∗(a∗a)†aa∗ = a∗a;

(iv) there exists some x ∈ R such that aa∗x = a∗a and a∗ax = aa∗;

(v) aa†a∗aaa† = aa∗.

3 Hermitian elements

In this section we characterize Hermitian elements in rings with involution
which are Moore-Penrose invertible. In the next theorem we present some
equivalent conditions for an element a of a ring with involution to be Her-
mitian.

Theorem 3.1. Suppose that a ∈ R†. Then a is Hermitian if and only if
one of the following equivalent conditions holds:

(i) aaa† = a∗;

(ii) aa = a∗a;

(iii) aa† = a∗a†.

Proof. If a is Hermitian, then it commutes with its Moore–Penrose inverse
and a∗ = a. It is not difficult to verify that conditions (i)-(iii) hold.

Conversely, to conclude that a is Hermitian, we show that the condition
a = a∗ is satisfied, or that the element is subject to one of the preceding
already established conditions of this theorem.

(i) Suppose that aaa† = a∗. Then

a = (a∗)∗ = (aaa†)∗ = aa†a∗ = aa†aaa† = aaa† = a∗.

(ii) From aa = a∗a, we get

aaa† = a∗aa† = a∗.
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Thus, the condition (i) is satisfied.
(iii) Multiplying aa† = a∗a† by a from the right side, we obtain a =

a∗a†a. Hence

a∗ = (a∗a†a)∗ = a†aa = a†aa∗a†a = a∗a†a = a.

The following theorem imply that Hermitian element in ring with invo-
lution can be characterized by some equalities involving the Moore-Penrose
inverse and group inverse.

Theorem 3.2. Suppose that a ∈ R†. Then a is Hermitian if and only if
a ∈ R# and one of the following equivalent conditions holds:

(i) aa# = a∗a†;

(ii) aa# = a∗a#;

(iii) aa# = a†a∗;

(iv) a†a = a#a∗;

(v) a∗aa# = a;

(vi) a∗a∗a# = a∗;

(vii) a∗a†a† = a#;

(viii) a∗a†a# = a†;

(ix) a∗a†a# = a#;

(x) a∗a#a# = a#;

(xi) a#a∗a# = a†;

(xii) aa∗a† = a.

Proof. If a is Hermitian, then it commutes with its Moore–Penrose inverse
and a# = a†. It is not difficult to verify that conditions (i)-(xii) hold.

Conversely, we assume that a ∈ R#, and show that a satisfies the equal-
ity a = a∗ or one of the conditions of Theorem 3.1, or one of the preceding,
already established condition of this theorem.
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(i) By aa# = a∗a†, we have

aa† = (aa#)aa† = a∗a†aa† = a∗a†.

So, a satisfies condition (iii) of Theorem 3.1.
(ii) If aa# = a∗a#, then

aa = (aa#)aa = a∗a#aa = a∗a.

The condition (ii) of Theorem 3.1 is satisfied.
(iii) Multiplying aa# = a†a∗ by a from the left side, we get a = aa†a∗.

Now,
a∗ = (aa†a∗)∗ = aaa†.

Therefore, the condition (i) of Theorem 3.1 holds.
(iv) Applying a†a = a#a∗, we have

a†aa = a†aa(a†a) = a†aaa#a∗ = a†aa∗ = a∗

and
a = a(a†a) = aa#a∗.

Then, by these equalities,

a∗ = (a†a)a = a#a∗a = a#(aa#a∗)a = a#aa = a.

(v) The assumption a∗aa# = a implies

aa = a∗aa#a = a∗a.

The condition (ii) of Theorem 3.1 is satisfied.
(vi) Assume that a∗a∗a# = a∗. Now

(44) aa† = (a†)∗a∗ = (a†)∗a∗a∗a# = aa†a∗a#.

Using (44), we get

(45) aa# = (aa†)aa# = aa†a∗a#aa# = aa†a∗a#.

From (44) and (45), we deduce that aa# = aa†. Since aa† is symmetric, aa#

is symmetric too. Then, by Theorem 1.3, a is EP and aa† = a†a. Therefore,

a = (aa#)a = (aa†)a∗(a#a) = a†aa∗aa† = a∗.

18



(vii) The equality a∗a†a† = a# gives

aa# = aa∗a†a† = a(a∗a†a†)aa† = aa#aa† = aa†.

Now, we conclude that aa# is symmetric. Then, from Theorem 1.3, a is EP
and a# = a†, by definition. Hence, from the previous equality and (vii), we
obtain the condition (v):

a = a#aa = a∗a†a†aa = a∗a#a#aa = a∗aa#.

(viii) When we use the equality a∗a†a# = a†, we have

aa# = aa†aa# = aa∗a†a#aa# = a(a∗a†a#) = aa†.

So, aa# is symmetric and, by Theorem 1.3, a is EP. Thus, by a# = a† and
(viii),

aa# = a#a = a†a = a∗a†a#a = a∗a#a#a = a∗a#.

The condition (ii) holds.
(ix) From the equality a∗a†a# = a#, we obtain

aa† = a#aaa† = a∗a†a#aaa† = a∗a†aa† = a∗a†.

Hence, a satisfies the condition (iii) of Theorem 3.1.
(x) If a∗a#a# = a#, then

aa# = a#a = a∗a#a#a = a∗a#.

The equality (ii) is satisfied.
(xi) Let a#a∗a# = a†. Now, we get

a#a = a#aa†a = a#aa#a∗a#a = (a#a∗a#)a = a†a.

Since a#a is symmetric, then a is EP, by Theorem 1.3. So, a# = a†, by
definition of EP element. From this equality and (xi), we have

a†a = a#a∗a#a = a#a∗aa# = a#a∗aa† = a#a∗.

Hence condition (iv) is satisfied.
(xii) Using aa∗a† = a, we obtain

a = aa∗a† = (aa∗a†)aa† = aaa†.

Then
a#a = a#aaa† = aa†,
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and we deduce that a#a is symmetric. Thus, a is EP, by Theorem 1.3 and
aa† = a†a. By the last equality and (xii), we get

aa† = a†a = a†aa∗a† = a∗a†.

Thus condition (iii) of Theorem 3.1 holds.

It should be mentioned that Theorems 3.1 and 3.2 generalize the obser-
vation by Baksalary and Trenkler, following their Theorem 6 in [1].

4 Conclusions

In this paper we considered Moore-Penrose invertible elements in rings with
involution. Precisely, we characterized MP-invertible normal and Hermitian
elements in terms of equations involving their adjoints, Moore-Penorse and
group inverse. All of these results are already known for complex matrices,
and for closed range linear bounded operators on Hilbert spaces. However,
we demonstrated the new technique in proving the results. In the theory
of complex matrices various authors used the matrix rank to characterize
normal and Hermitian matrices. In the case of linear bounded operators on
Hilbert spaces, it seems that the method of operator matrices is very useful.
In this paper we applied a purely algebraic technique, involving different
characterizations of the Moore-Penrose inverse.

Acknowledgement. We are grateful to the referee for helpful comments
concerning the paper.
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